

Schneidwerkzeuge für Kaindl CDF C-s2, d0 Platten und Kaindl Dekor CDF C-s2, d0 Platten

Kaindl Info_D 5

Stand: Juni 2022

Blatt 1/9

Allgemeine Informationen

Die Kaindl CDF C-s2, d0 Platte ist eine kompakt verdichtete, schwarz eingefärbte Holzfaserplatte mit einer Mindestdichte von 1000kg/m³. Die hohe Festigkeit durch den gesamten Plattenquerschnitt erlaubt eine dreidimensionale Bearbeitung ohne Ausfaserung. Die Oberfläche der Kaindl Dekor CDF C-s2, d0 Platte ist durch einen Melamin Zweiblattaufbau hochwertig veredelt. Sie eignet sich daher zur Verwendung bei beanspruchten Oberflächen.

Zuschnitt

Für ein gutes Schnittergebnis sind verschiedene Faktoren zu berücksichtigen: Sägeblattüberstand, Vorschubgeschwindigkeit, Zahnform, Zahnteilung, Drehzahl und Schnittgeschwindigkeit. Zudem ist die Platte mit der Dekorseite nach oben zu schneiden. Je nach Schnittaufkommen werden hartmetallbestückte (HW) oder diamantbestückte (DP) Kreissägeblätter verwendet.

Formatsägen

HW- Sägeblätter mit den Zahnformen Wechselzahn (WZ) und Hohlzahn (Duplovit) eigenen sich insbesondere für Formatsägen bei kleineren Schnittmengen. Beidseitig gute Kanten werden nur unter Einsatz eines entsprechenden Vorritzers erreicht.

Sägeblätter mit den Zahnformen Trapez-Flachzahn (TR-F) bzw. Trapez-Flach-Fase (TR-F-Fa) erreichen längere Standzeiten bei guter Schnittqualität.



Abbildung: Zahnformen

Die empfohlene Schnittgeschwindigkeit liegt bei 60-80 m/sec. Empfohlener Vorschub pro Zahn: 0,03 - 0,08mm.

Plattenaufteilsägen

Auf Plattenaufteilanlagen werden die besten Ergebnisse mit den Zahnformen Trapez-Flachzahn (TR-F) bzw. Trapez-Flach-Fase (TR-F-Fa) erreicht. Zahneingriff auf der

Dekorseite der Platte, wenn nur diese Seite sichtbar verarbeitet wird. Beidseitig gute Kanten werden nur unter Einsatz eines entsprechenden Vorritzers erreicht.

Der Sägeblattüberstand ist durchmesserabhängig einzustellen:

Sägeblatt	Überstand
Ø 300 mm	ca. 20 mm
Ø 350 mm	ca. 25 mm
Ø 400 mm	ca. 25 mm
Ø 450 mm	ca. 30 mm

Die empfohlene Schnittgeschwindigkeit liegt bei 70-90 m/sec. Bei diamantbestückten Kreissägeblättern ist der obere Wert zu wählen. Empfohlener Vorschub pro Zahn: 0,07-0,15 mm.

Fräsen und Randbearbeitung

Für Fräsarbeiten sind Werkzeuge mit Hartmetall- oder Diaschneiden zu verwenden. Bei HW-Wendeplatten ist darauf zu achten, dass eine verschleißfeste HW-Qualität (Empfehlung: ISO Norm K05) verwendet wird. Als gut geeignete Qualität hat sich die HW- Qualität HL Board 06 erwiesen. Beim Fräsen von rechtwinkeligen Aussparungen auf der Plattenoberfläche ist darauf zu achten, dass vor dem Ausfräsen der Fläche die Ecken mit einem Bohrloch vorgebohrt werden.

Bei Verwendung von Fügefräsen sind Werkzeuge in Achswinkelausführung zu empfehlen. Zum Bearbeiten der Kanten sind Feilen geeignet, dabei sollte die Feilrichtung von der Dekorseite zum Trägermaterial gehen. Zum Brechen von Kanten können mit gutem Erfolg feine Feilen und Schleifpapier(Körnung 100 bis 150) oder Ziehklingen verwendet werden. Gefräste Kanten sollen wie folgt bearbeitet werden:

- Leichtes Brechen der scharfen und der zum Teil nicht glatten Kanten mit Schleifpapier.
- 2. Abziehen der Kante mit einer Ziehklinge.
- 3. Nochmaliges Kantenbrechen mit einem Schleifpapier.
- 4. Sorgfältiges Entfernen der ausgebrochenen Schleifkörper.

Bearbeitung auf CNC- Stationärmaschinen

Es können alle gängigen HW- und DP-Schaftwerkzeuge verwendet werden. Folgende Punkte sind jedoch zu beachten:

- Gute Seite im Gegenlauf bearbeiten.
- Immer den größtmöglichen Durchmesser wählen (geringere Vibrationsgefahr).

Spannmittel: Neuwertige Spannzange, Hydrospann-System oder Schrumpffutter verwenden, um einen möglichst präzisen und ruhigen Werkzeuglauf zu gewährleisten.

Werkzeug: Hartmetall- oder Diaschneiden

Durchmesser: möglichst groß wählen. Beim Fräsen von Taschen oder Ausschnitten sollte das Werkzeug auf jeden Fall mit einer Grundschneide bzw. Bohrschneide ausgeführt sein.

Schnittgeschwindigkeit: durchmesserabhängig (10 - 30 m/sec)

Zahnvorschub: 0,3 - 0,6 mm, möglichst im Gegenlauf.

Aufspannung: möglichst schwingungsarm, abgetrennte Teile gegen Herunterfallen sichern.

Tischfräse und Fräser für Durchlaufanlagen

Werkzeug: Messerköpfe mit Hartmetall-Wendeplatten oder diamantbestückte (DP) Fräser mit achsparalleler, besser pfeilverzahnter Schneidenstellung (Achsenwinkel).

Durchmesser: möglichst groß wählen.

Schnittgeschwindigkeit: 50 - 60 m/sec

Beispiele:

Durchmesser	Umdrehungen
Ø 100 mm	12.000 U/min
Ø 125 mm	9.000 U/min
Ø 150 mm	7.500 U/min
Ø 180 mm	6.000 U/min

Zahnvorschub: 0,4 – 1,2 mm; möglichst im Gegenlauf.

Zerspaner für Durchlaufanlagen

Werkzeug: Die Kaindl Spanplatten als auch Kaindl CDF C-s2, d0 Platten und Kaindl Dekor CDF C-s2, d0 Platten lassen sich grundsätzlich gut im Doppelzerspanerverfahren bearbeiten. Empfehlenswert sind hierbei Zerspaner mit geringem Schnittdruck.

Schnittgeschwindigkeit: 80 m/sec

Zahnvorschub: 0,08 - 0,15 mm mit Standardzerspaner

0,2 - 0,35 mm mit Power Tec-Zerspanern

Handoberfräse

Werkzeug: Hartmetallbestückte Fräser oder Werkzeuge mit HW- Wechselplatten.

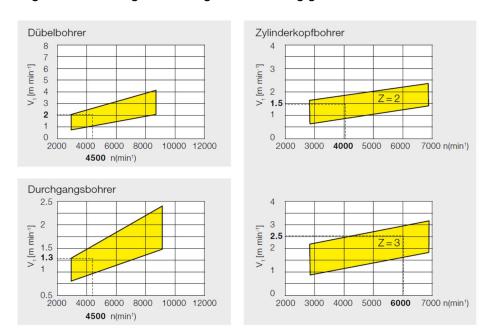
Durchmesser: 10 - 25 mm

Schnittgeschwindigkeit: bis 10 - 25 m/sek.

Aufspannung: möglichst schwingungsarm, abgetrennte Teile gegen hinunterfallen sichern.

Bohren

Spannmittel: spielfreie Aufnahmen mit sicherem Halt.


Werkzeug: Geeignet sind hartmetallbestückte (HW) Bohrer und Bohrer aus Vollhartmetall (HWM).

Vorschub: 1,5 - 2 m/min.

Drehzahl: 4.500 - 6.000 U/min.

Drehzahldiagramme

Zur Ermittlung der Vorschubgeschwindigkeit in Abhängigkeit der Drehzahl

Durchgangsbohrungen

- Es sind Bohrer mit geringem Schnittdruck und gutem Spanguttransport zu wählen.
- Austrittsgeschwindigkeit reduzieren (50%).
- Bohrer mit Rückenführung erzeugen den besseren Schneidenrand.

Sacklochbohrungen

- Für Sichtbohrungen Bohrer mit Zentrierspitze und Vorschneider verwenden.
- Bei Durchmessern < 8mm ist bei deiner Bohrlochtiefe > 10mm bei der Kaindl CDF C-s2, d0 Platte und der Kaindl Dekor CDF C-s2, d0 Platte ein Entspanen zu empfehlen.
 Je nach Vorschub und Drehzahl kann es sonst zu einer Klumpenbildung kommen.
 Bei den Spanplatten ist dies nicht der Fall.
- Lochbohrungen mit kleinen Durchmessern (\emptyset 2 3mm) können auch sehr gut mit einem HWM Bohrstift erzeugt werden.

Beschlagbohrungen

- HW-bestückte Zylinderkopfbohrer Z=2 oder Z=3.
- Höhere Standzeiten werden mit Wendeplattenzylinderkopfbohrern erreicht.

Lebensdauer

Die Lebensdauer der Werkzeuge und das Arbeitsergebnis hängen selbstverständlich von mehreren Faktoren ab. z.B.: dem Material, dem Werkzeug und der verwendeten Maschine. Genannte Werte sind immer nur Richtlinien. Aufgrund der Vielfältigkeit der Bearbeitungsmaschinen und der Komplexität der Aufgabenstellungen empfehlen wir die Abklärung der kundenspezifischen Anforderungen gemeinsam mit dem Werkzeughersteller Ihres Vertrauens.

Matrix: Schnittgeschwindigkeit V_c in Abhängigkeit von Werkzeugdurchmesser und Drehzahl

Werkzeug- durchmesser (in mm)	Schi	nittges	chwin	digkei	t V _c in	m/sec	(angeg	ebene	Vc-W	erte sir	nd ger	undete	e ca. V	Verte)
450	24	47	71	94										
400	20	40	60	80	100									
380	19	38	57	76	95									
360	18	36	54	72	90									
340	17	34	51	68	85	102								
320	16	32	48	64	80	96								
300 ¹⁾	15	30	45	60	75	90	105							
280	14	28	42	56	70	84	98							
260	13	26	39	52	65	78	91	104						
240	12	24	36	48	60	72	84	96						
220	11	22	33	44	55	66	77	88	99					
200	10	20	30	40	50	60	70	80	90	100				
180 ²⁾	9	18	27	36	45	54	63	72	81	90				
160	8	16	24	32	40	48	56	64	72	80	96			
140	7	14	21	28	35	42	49	56	63	70	84			
120	6	12	18	24	30	36	42	48	54	60	72	90		
100	5	10	15	20	25	30	35	42	45	50	60	75	90	
80	4	8	12	16	20	24	28	36	36	40	48	60	72	84
60	3	6	9	12	15	18	21	24	27	30	35	45	54	63
40	2	4	6	8	10	12	14	16	18	20	24	30	36	42
20	1	2	3	4	5	6	7	8	9	10	12	15	18	21
10	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	6	7,5	9	10,5
Drehzahl (n) der Werk- zeugwelle (min ⁻¹)	1000	2000	0008	4000	0009	0009	0002	0008	0006	10000	12000	15000	18000	21000

Beispiele:

- 1) HW Kreissägeblatt Ø 300mm bei 4000 U/min: Vc = 60m/sek.
- 2) WPL-Messerkopf Ø 180mm bei 6000 U/min: V_c = 54m/sek.

Problemlösungshilfe

Problem	Erkennung	Mögliche Ursache	Abhilfe
Material verbrennt	- Rauch- und Geruchsentwicklung beim Sägen, Fräsen oder Bohren - Dunkle Verfärbung des Kernmaterials	 Zu niedrige Vorschubgeschwindigkeit Falscher oder kein Anschlag (Säge) Werkzeug stumpf Zu hohe Zahn-bzw. Schneidenzahl Zu hohe Drehzahl 	 Vorschubgeschwindigkeit erhöhen Führung der Säge verbessern Werkzeug schärfen Werkzeug mit richtiger Zahn-/Schneidenzahl verwenden Drehzahl reduzieren
Ausbruch von Schnittkanten	- Sichtprüfung der Schnittkanten	 Säge/Fräsen stumpf oder falsch geschliffen Zu hoher Vorschub Falsche Höheneinstellung (Säge) Schlechte Auflage der Platte (Fräsen) Vibrationen (Fräsen) 	- Werkzeug kontrollieren und schleifen - Vorschub verringern Richtigen Überstand einstellen - Stabilisieren der Platte - Führung der Werkzeuge prüfen
Geringe Standzeit des Werkzeugs	- Erfassung der Betriebsstunden, der geschnittenen Meter oder der Anzahl der Bohrungen	 Werkzeug falsch geschliffen Zu hohe Drehzahl oder zu hoher Vorschub Falsche Höheneinstellung (Säge) Falsche Zahnform (Säge) Falsche Schneidengeometrie (Bohrer) Ungeeigneter Schneidstoff 	-Werkzeug schleifen lassen Drehzahl oder Vorschub verringern - Richtigen Überstand einstellen - Geeignete Säge verwenden - Geeigneten Bohrer verwenden - Qualitätswerkzeuge verwenden
Kratzer auf dem Dekor	- Sichtprüfung der Oberfläche	- Schieben der Platte über eine raue Oberfläche	- Unterlegplatte beim Vorschub der Platte verwenden - Stationäre Maschine mit beweglicher Werkstückauflage verwenden

Anwendungsbeispiele

Zuschnitt auf Tischkreis Einzelplatte 16mm HW Säge Ø 303 x 3,2 x Ø				
n = 4.000 min ⁻¹ Vc = 63 m/sec				
vf = 10-15 m/min fz = 0,03-0,04 mm				

Zuschnitt auf Plattenauft Paketschnitt 4 x 25mm = 1 DP Sägeblatt Ø 450 x 4,8 x	00mm			
n = 3.600 min ⁻¹ Vc = 85 m/sek				
vf = 20 m/min	fz = 0,08 mm			

Fräsen auf CNC Stationärmaschine					
Plattenstärke 19mm					
DP Schaftfräser Ø 20 x SL28,	Schaft Ø 25 x 55, GL				
95mm					
Z = 3+3 Hochleistungsfräser C	M positiv (rechtsdrehend)				
Fügeschnitt (Abnahme 3mm)					
n = 24.000 min ⁻¹	Vc = 25 m/sek				
vf = 20 m/min	$fz = \sim 0.28 \text{ mm}$				
Trennschnitt					
n = 20.000 min ⁻¹	Vc = 21 m/sek				
vf = 10-12 m/min fz = ~ 0.2 mm					
Kreisausschnitt					
n = 20.000 min ⁻¹	Vc = 21 m/sek				
vf = 8-10 m/min	$fz = \sim 0.17 \text{ mm}$				

Für die Berechnung von Zahnvorschub und Schnittgeschwindigkeit gelten folgende Formeln:

$$Vc = \frac{D * \pi * n}{6000}$$

$$fz = \frac{\text{Vf} * 1000}{\text{Z} * \text{n}}$$

Vc...Schnittgeschwindigkeit (m/sek)

fz... Zahnvorschub od. Vorschub pro Zahn (mm)

Vf...Vorschubgeschwindigkeit (m/min)

D...Werkzeugdurchmesser (cm)

n...Drehzahl (min-1)

z...Zähnezahl

Beispiele für Werkzeuge der Firma Leuco zur Bearbeitung von Kaindl CDF C-s2, d0 Platten und Kaindl Dekor CDF C-s2, d0 Platten:

Kreissägeblätter für Plattenaufteilsägen

Abmessung	Z	Maschine	Schneid- stoff	Zahn- form	Ident-Nr.
Ø 320 x 4,4 x Ø 65	60	Selco EB 80	HW	TR-FL	191954
Ø 350 x 4,4 x Ø 30	72	SCM, Panhans, Mayer, Schelling, HOLZHER	HW	TR-FL	189897
Ø 350 x 4,4 x Ø 60	72	Holzma 72, HPP350	HW	TR-FL	189898
Ø 380 x 4,4 x Ø 60	72	Holzma	HW	TR-FL	191955
Ø 380 x 4,8 x Ø 60	72	Holzma Typ 380/83/82	HW	TR-FL	189901
Ø 400 x 4,4 x Ø 30	72	Schelling, Mayer Irion, Scheer, HOLZHER	HW	TR-FL	189899
Ø 400 x 4,4 x Ø 75	72	Giben Prismatic 1, Giben Starmatic, Homag CH08 und CH12	HW	TR-FL	189900
Ø 450 x 4,8 x Ø 60	72	Holzma	HW	TR-FL	189902

Kreissägeblätter für Formatsägen

Abmessung	Z	Zahnform	Schneidstoff	Ausführung	Ident-Nr.
Ø 300 x 3,2 x Ø 30	72	Tr-F	HW Board 03	Low Noise	189684
Ø 303 x 3,2 x Ø 30	84	Tr-F-Fa	HW Board 06	Solid Surface	189531
Ø 303 x 3,2 x Ø 30	60	DA-D	HW Board 06		189690
Ø 303 x 3,2 x Ø 30	60	Tr-F	DP		189636
Ø 350 x 3,5 x Ø 30	84	WS	HW Board 03	G5-Säge	189677

Fräser für Tischfräsen und Durchlaufanlagen

Abmessung	Z	Schneidstoff	Bemerkung	Ident-Nr.
Ø 125 x 56 x Ø 30	2x3	HW WPL	WP-Fügefräser für manuellen Vorschub	177004
Ø 125 x 43 x Ø 30	3+3	DP	DP Fügefräser Low Noise	184029
Ø 100 x 43,5 x Ø 30	3+3	DP	DP Fügefräser Smart Jointer für Brandt	183914
Ø 125 x 48 x Ø 30	3+3	DP	DP P-System mit extremen Achswinkel	184071

CNC Schaftfräser geradschneidig

Schneid Ø/ Schneidlänge (SL)	SchaftØ x Länge	Gesamt- länge	Schneiden- zahl	Schneidstoff	Bemerkung	ldent-Nr.
Ø 20xSL 33	Ø25x50	80	2+2	HW WPL	Wendeplattenschaft fräser	184252 RE
Ø 18xSL 55	Ø18x50	110	2+2	HW massiv	Schlichtfräser positiv/negativ	180874 RE
Ø 12xSL 22	Ø12x40	69	1+1	DP Diamant	Diamax	183444 RE
Ø 20xSL 28	Ø20x55	95	2+2	DP Diamant	Diamax	183410 RE
Ø 20xSL 28	Ø25x55	95	3+3	DP Diamant	Hochleistungsfräser CM pos	183264 RE
Ø 48xSL 22	Ø25x62	85	4+2+4	DP Diamant	Hochleistungsfräser	181499 RE
Ø 25xSL 26,5	Ø25x55	105	2+2+1	DP Diamant	p-system	184382 RE
Ø 60xSL 38	Ø25x55	105	4+4	DP Diamant	p-system	184084 RE

Durchgangsbohrer

Durchmesser in mm	Ausführung	LEUCO Ident-Nr. Links	LEUCO Ident-Nr. Rechts
Ø 5x 40, s Ø 10, GL70	VHW Mosquito	183153	183152
Ø 6x 40, s Ø 10, GL70	VHW Mosquito	183157	183156
Ø 8x 40, s Ø 10, GL70	VHW Mosquito	183157	183156
Ø 5x 35, s Ø 10, GL70	DP Diamant Z=1	183017	183016
Ø 6x 35, s Ø 10, GL70	DP Diamant Z=2	183019	183018
Ø 8x 35, s Ø 10, GL70	DP Diamant Z=2	183021	183020

s Ø= Schaftdurchmesser; GL= Gesamtlänge Bohrer

Dübelbohrer / Sacklöcher / Beschlagbohrer

Durchmesser in mm	Ausführung	LEUCO Ident-Nr. Links	LEUCO Ident-Nr. Rechts
Ø 5x 30, s Ø 10, GL70	VHW Mosquito	182390	182391
Ø 6x 30, s Ø 10, GL70	VHW Mosquito	183149	183148
Ø 8x 30, s Ø 10, GL70	VHW Mosquito	183151	183150
Ø 5x 35, s Ø 10, GL70	DP Diamant Z=2	183011	183010
Ø 6x 35, s Ø 10, GL70	DP Diamant Z=2	183051	183052
Ø 8x 35, s Ø 10, GL70	DP Diamant Z=2	183013	183012
Ø 25 x s Ø 10, GL70	HW-bestückt Z=2	178980	172252
Ø 35 x s Ø 10, GL70	HW-bestückt Z=2	178982	172254
Ø 25 x s Ø 10, GL70	WPL-Ausf. Z=2+2		182570
Ø 25 x s Ø 10, GL57	DP Diamant Z=2	182999	182998

s Ø= Schaftdurchmesser; GL= Gesamtlänge Bohrer

Abkürzungen

Für die Holzbearbeitung sind in der Branche folgende Schneidstoffe im Einsatz:

SP Legierter Werkzeugstahl
HL Hochlegierter Werkzeugstahl
HS Hochleistungs-Schnellschnittstahl

HW Unbeschichtetes Hartmetall auf Wolframkarbid-Basis

HC Beschichtetes Hartmetall
ST Gusslegierung auf Kobalt-Basis
DP Polykristalliner Diamant

VHW Hartmetall auf Wolframkarbid-Basis

Weitere Abkürzungen:

CDF Compact Density Fibreboard

CNC 'Computerized numerical control' (englisch für 'rechner- oder computerbasierte

numerische Steuerung')

HWM Bohrer aus Vollhartmetall
TR-F Trapez-Flachzahn (Zahnform)
TR-F-Fa Trapez-Flach-Fase (Zahnform)
WZ Wechselzahn (Zahnform)
WS Wechselzahn (Zahnform)

Diese LEUCO Produkte stellen nur eine kleine Auswahl an möglichen Werkzeugen dar. Selbstverständlich können zur Verarbeitung von Kaindl CDF C-s2, d0 Platten und Kaindl Dekor CDF C-s2, d0 Platten auch Schneidwerkzeuge anderer Hersteller verwendet werden!